Shri Lemdeo Patil Mahavidyalaya

Subject – Physics Semester-VI Topic- Operational Amplifier

> By Dr. Deepak Taikar

Op-Amp

- It is DC coupled high gain voltage amplifier with differential input and single ended output
- It perform mathematical operations like Addition,
 Subtraction, Integration and Differentiation.
- The difference amplifier is a basic building block of OP-AMP.

Differential Amplifier

- It amplify the difference between two input signal
 - If **common mode signal** (equal in magnitude & in phase) is applied to both inputs then change in collector current of Q1 and Q2 will be identical and output voltage between two collector will be zero
 - If difference mode signal is applied
- $V_1 = -V_2 \text{ (magnitude same but out of phase)}$ Gain = V_o/V_i =V_o/[V₁-(V₂)] = =V_o/[V₁-(-V₁)] =V_o/2V₁ V_o = Gain x 2V₁ V₁=+5, V₂ = -5 → V_o = Gain x 2V₁ = Gain x 2(5)

Block Diagram of an Op-AMP

Parameter	Symbol	Ideal Op-Amp	Practical Op-Amp
DC Open loop gain	A _{OL}	8	100 dB
Input Impedance	Z _{IN}	8	2ΜΩ
Output Impedance	Zout	0	75Ω
Input Offset Voltage	V _{IO}	0	1mV
Slew rate	SR	8	Depends on input signal frequency
Bandwidth	BW	8	Depends on input signal frequency
CMRR	ρ	8	90 dB

- **Slew rate:-** rate of change of output voltage with time.
- **Input bias current**:- the average value of current flow into each of the input terminals, when OPAMP is balanced.
- **CMMR**:- It is the ability of amplifier to reject common mode signal

 $CMMR = rac{Differential\ mode\ gain}{common\ mode\ gain}$